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Abstract 

 
Laser-generated colliding plasma streams can serve as a test-bed for the study of various 
astrophysical phenomena and the general physics of self-organization. For streams of a 
sufficiently high kinetic energy, collisions between the ions of one stream with the ions 
of the other stream are negligible, and the streams can penetrate through each other. On 
the other hand, the intra-stream collisions for high-Mach-number flows can still be very 
frequent, so that each stream can be described hydrodynamically. Presented in this paper 
is an analytical study of the effects that these interpenetrating streams have on large-scale 
magnetic fields either introduced by external coils or generated in the plasma near the 
laser targets. Specifically, a problem of the frozen-in constraint (“Into which stream is the 
magnetic field frozen?”) is resolved and paradoxical features of the field advection in this 
system are revealed. A possibility of using this system for studies of magnetic 
reconnection is mentioned.  
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I. INTRODUCTION 
 
 Two laser-generated interpenetrating plasma streams can serve as a test-bed for 
the study of various astrophysical phenomena [1] and of the general physics of self-
organization [2]. For streams of a sufficiently high kinetic energy, collisions of the ions 
of one stream with the ions of the other stream are negligible, and the streams can 
penetrate through one another [1, 3]. If the spatial scale of the area where the streams 
overlap is sufficiently large, one may observe the formation of collisionless shocks 
mediated by the development of plasma microturbulence [4-7]. For experiments with a 
smaller-sized overlap zone, the microturbulence does not have a chance to develop, and 
the ion streams penetrate through each other more-or-less freely [3]. Our paper is 
pertinent to this latter regime of freely inerpenetrating ion streams. 
 The collisions within each stream can be still very frequent. Indeed, the streams in 
the experiments of the type described in [2, 3] are produced by the free expansion of a 
plasma created by the interaction of a laser light with a target. The initial thermal energy 
is converted to the kinetic energy of the expanding flow. The electrons and ions cool 
down in this process, and a very high-Mach-number flow is formed [8]. Since the 
temperature of each stream is low, collisions between the ions within each stream and 
between electrons and ions are very frequent, so that the electron gas and the ions within 
each stream are highly collisional. Various effects of these intra-stream collisions have 
been studied in Refs. [9, 10].  
 Note that in the present paper we have switched from the term “jet” used in some 
previous publications on interpenetrating plasmas [8, 9], to the term “streams,” as the 
flows used in the aforementioned experiments are less collimated than the jets produced 
in dedicated experiments on astrophysically-relevant jets (e.g., [11, 12]). Therefore, the 
term “stream” seems to better relate the properties of the plasma flows with which we are 
concerned.  
 We will address the issue of magnetic field line-tying and magnetic field 
advection in a system comprised of two such interpenetrating plasma streams. We 
consider large-scale fields either imposed by external sources, or generated in the streams 
themselves (e.g., by the “!ne " !Te ”mechanism acting in the hot-plasma zone near the 
targets [13]).  As the magnetic Reynolds number is typically high (see below), one might 
expect that the frozen-in condition for the magnetic field would hold, and the magnetic 
flux would be advected in the plasma flow.  However, the presence of the 
interpenetrating streams makes the situation somewhat more complex than usual, as one 
can ask: “Into which stream is the magnetic field frozen?”  In this study, we assess this 
problem in a two-fluid dynamics framework, using the quasineutrality constraint and the 
electron momentum equation. We find the streamlines of the effective flow, into which 
the field is frozen, and provide some examples of the magnetic field advection. We allow 
for the streams to be made of different elements, with charge states Z1 and Z2 and the 
corresponding atomic masses A1 and A2.  
 In our numerical estimates, we use the set of parameters for each stream as given 
in Table 1, assuming that the streams are identical and have a common axis (Fig 1). 
However, the general equations presented in this paper are free of these assumptions.  
 
 



 3 

II. THE ELECTRON MOMENTUM EQUATION 
  
 As is well known (e.g., Ref. [13]), to assess the magnetic advection, one has to 
analyze the electron momentum equation. We note that the electron collision mean-free 
path is much shorter than the characteristic spatial scale, so that one can use the Braginski 
momentum equation. Moreover, the electron thermal velocity is much higher than 
directed ion velocity and ion thermal velocity. The characteristic time τ (Table 1) is much 
longer than the electron transit time L/vTe (Table 2), thus allowing us to neglect the 
electron inertia term. With these observation made, one can write down the following 
electron momentum equation (see Eq. (2.2e) in Ref. [14]): 

 
0 = !"(neTe )! ene E +

ve #B
c

$

%
&

'

(
)+FT +Fei .     (1) 

As mentioned, we neglect the inertial terms in the left-hand side; we also neglect the 
electron viscosity, as it is very small compared to, say, the electron-ion friction terms. 
The retained terms in Eq. (1) have the following meaning: the first term is the pressure 
gradient, the second is the Lorentz force, the third is the electron thermal force, and the 
last term describes the electron friction against the ions (Cf. Refs. 13,14).  
 The friction force is proportional to the plasma resistivity; the latter does not 
affect the magnetic field evolution, since the magnetic Reynolds number (Table 2) is very 
large. So, we can neglect the last term in Eq. (1).  
 The thermal force can be represented as ([14], Eq. (4.31)): 
 FT = ne !!||"||Te !!#"#Te !!$b%"Te( ) ,     (2) 
where b ! B / B  is a unit vector in the magnetic field direction, and the coefficients α 
depend significantly on the electron magnetization, by which we mean the ratio of the 
electron mean-free path to the electron gyro-radius, !ei / "e .  The last term in Eq. (2) 
describes the component of the force perpendicular to both the magnetic field and the 
electron temperature gradient (“Nernst effect”).  For the plasma parameters presented in 
Tables 1 and 2, the magnetization parameter is less than one only for very low magnetic 
fields, below 2 to 3 kG.  
 For weak magnetic fields, where the magnetizaion parameter is small (“weak 
magnetization”) an expression for the thermal force, up to the first-order terms in the 
magnetization parameter, reads as:  

 FT ! "0.71ne#Te "!1ne
eB$#Te
mc!ei

,       (3)  

where α1 is a numerical parameter of order 1. The first term here appeared from the first 
two terms in Eq. (2), due to the fact that the coefficients ! ||  and !" become equal to each 
other for !ei / "e # 0 . As has been correctly pointed out in Ref. [15], the Nernst effect 
may impact the advection of magnetic fields in laser-generated plasmas under some 
circumstances.  
 For a high magnetization, !ei / "e >>1, the expression for the thermal force, up to 
the terms of the first order in the parameter ! e /"e i <<1  becomes [14]: 
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where α2  is another coefficient of order one. For strong magnetization, the Nernst term is 
negligible (see numerical estimates below). 
 After this preparatory work, we can proceed to the solution of the advection 
problem. To do so, we find E from Eq. (1) and substitute it in the Faraday equation, 
!B /!t = "c#$E . In this way we obtain that 

 !B /!t ="# ve #B[ ]+ c
ene

"ne #"Te[ ]+ c
e
"#

FT
ne

.     (5) 

As mentioned above, we have neglected the electron-ion friction. If retained, it would 
have led to a magnetic diffusion term in the r.h.s. that is negligibly small for the set of 
parameters of Table 1. 
 Now we relate the electron velocity and the ion velocity. We use the 
quasineutrality constraint, 
 ne = Zi

(k )

k
! ni

(k ) ,        (6) 

where the superscript “k” refers to the k-th stream, and we allow for having streams made 
of different ion species. We also use a straightforward expression for the current density: 
 j = !eneve + e Zi

(k )ni
(k )vi

(k )

k
" .       (7) 

From the last two equations we have: 

 ve = !
j
ene

+u ,         (8) 

with 

 u =
Zi
(k )ni

(k )vi
(k )

k
!

Zi
(k )

k
! ni

(k )          (9) 

Note that the velocity u coincides with the ion mass velocity of the ion flow only in the 
case where the ratio Zi/Ai is the same for all jets. One can call velocity u “the ion charge 
velocity.” By an order of magnitude, it is equal to the velocity v that enters Table 1.  
 The electron continuity equation has a standard form !ne /!t +"(neve ) = 0  or, due 
to the quasineutrality condition,  

 !ne
!t

+"(neu) = 0         (10) 

 The first term in the right-hand side (rhs) of Eq. (8) is responsible for the Hall 
effect. Let us estimate the relative magnitude of the first and the second terms in Eq. (8). 
As j = (c / 4! )!"B , we can estimate j as j ~ cB / 4!L , so that the ratio of the first term 
to the second term becomes "1"/"2" ~ cB / 4!enevL . Substituting numerical values from 
Table 1, we find: "1"/"2" ~ B /100MG . A field of 100 MG cannot be generated by the 
system under consideration, in particular, because of a simple energy consideration (the 
field energy density would greatly exceed the plasma energy density). So, we conclude 
that one can neglect the first term compared to the second term in Eq. (8).  One can note 
in passing that, if the Hall term was dominant, one would have entered the regime of so-
called Hall magnetohydrodynamics, or electron magnetohydrodynamics [16], with very 
different advection properties.  
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 The last term in Eq. (5) can be presented as: 

 c
e
!"

FT
ne

= #
c
e
!" (!||!||Te +!$!$Te )+!" uN "B[ ] ,     (11) 

where  

 uN =
c!!

eB
"Te          (12) 

is a quantity of the dimension of velocity arising from the Nernst term in the thermal 
force.  
 Neglecting the term proportional to j in Eq. (8) and using Eqs (11), (12), one 
arrives at the following equation describing the evolution of the magnetic field: 
 !B /!t ="# (u+uN )#B[ ]+ S  ,      (13) 
where 

 S = c
e

!ne "!Te[ ]
ne

+!" (!||!||Te +!#!#Te )
$
%
&

'
(
)

.     (14) 

Equation (13) describes advection of the magnetic field in a medium that moves with the 
velocity u+uN; the term S is a source term. In a weakly magnetized plasma, one has  [14]: 
!|| =!! = 0.71 , and the vorticity term in Eq. (14) drops out. We recover then the standard 
!ne "!Te  source. [Note that the numerical values of the α’s depend on the ion charge; 
the coefficient 0.71 refers to hydrogen; for carbon it is close to 1.2, see Table 2 in Ref. 
[14]. In a highly magnetized plasma, !! becomes negligibly small, leading to an order 
one modification of the source term. 
 The main focus of this paper is to consider new features of the advection effect in 
the presence of two (or more) interpenetrating ion streams. So, let us neglect for a 
moment the source term and consider the advection equation. The ratio of the “Nernst 
velocity” uN to the “charge velocity” u is, by an order of magnitude: 

 

! 

uN
u
~ c"#

eB
|$Te |
v

~ c"#Te
eBLv

.         (15) 

For weak magnetization, according to Eq. (3), this yields: 

 uN
u
~ !eivTe

Lv
.            (16) 

For strong magnetization, according to Eq. (4), Eq. (15) yields  

  uN
u
~ !e

2vTe
"eiLv

,           (17) 

or, numerically,  

 uN
u
~ 7 !10"10 Z 2ni (cm

"3)
B2 (kG)L(cm)v(cm/s) Te(eV )

.       (18) 

 For the set of parameters of Table 1, the transition from low to high magnetization 
occurs for a magnetic field of approximately 2 to 3 kG. Such a field is too weak to cause 
significant modification of the ion trajectories (it corresponds to the ion gyroradius ρi ~ 
10 cm), and its pressure is orders of magnitude less than the plasma pressure. We then 
consider the opposite case of a strong magnetization, B>3 kG. In this case, one can check 
that the ratio uN/u is less than 1, and one can neglect the effect of the Nernst term on 
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advection. We therefore arrive at the problem of the magnetic field advection by the flow 
of some imaginary perfectly conducting fluid,  
 !B /!t ="# u#B[ ]+ S ,        (19) 
with the velocity field u determined by Eq. (9). 
 
III. STREAMLINES OF THE EFFECTIVE FLOW 
  
 We consider two oppositely-directed plasma streams generated by small-scale 
sources. This imitates the conditions in experiments of the type described in Refs. [1-3]. 
The initial size is determined by the diameter of the driving laser focal spot, which is 
indeed much smaller than the length-scale L. So, in the interaction region the streams can 
be considered as being generated by point sources. The flows then are diverging 
spherically [8], with the velocities in each stream directed radially away from the 
corresponding source (Fig. 1).  
 For steady-state flows, the radial particle flux decreases as 1/R2 where R is the 
distance from each source. We will allow for variation of the flux with the polar angle ! , 

 qR (R,! ) =
Q(! )
R2

, q! = q! = 0 .      (20) 

The angular dependence will be approximated by the function Q! exp "K(1" cos! )[ ] , 
where the parameter K characterizes the angular divergence. For example, a stream that 
has a half-max width of 30o corresponds to K=5.17; of 45o, to K=2.37; of 60o, to K=1.39; 
and isotropic distribution into half-space, to K=0. The velocity in the steady-state flow is 
assumed to be constant, v0, independent of the radius and angle. The angular variation of 
the particle flux is related to the angular variation of the density. Equation (20) describes 
one of the flows, with R measured from its origin and ! measured from the normal. The 
opposite flow will be described analogously, with the obvious change of origin and 
opposite direction of the normal. 
 To describe the shape of the streamlines, it is more convenient to use cylindrical 
coordinates, with the origin situated in the midplane between the sources and the axis z 
directed along the system axis; the origin then is situated halfway between the sources. 
The radial distance from the axis in cylindrical coordinates is denoted by r. In further 
calculations we use the distances r and z normalized to the half-length between the 
sources, L. In other words, the sources are situated at z = ±1 . With that, the velocity field 
u becomes: 

ur =
Q0r
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           (22) 
The parameter f accounts for a possible asymmetry of the streams: f<1 means that the 
upper flow is weaker than the lower one. 
 Streamlines of this flow are a solution of the differential equation 

 dr
ur
=
dz
uz

.          (23) 

Maps of the streamlines for several divergence angles are shown in Fig. 2. The lower 
right figure corresponds to the upper stream being two times weaker than the lower one, 
f=0.5. One sees that the effective flow stagnates on the axis and spreads sideways. As we 
will see in the next section, this has a significant effect on the magnetic field structure.  
 
IV. MAGNETIC FIELD ADVECTION 
  
 As an example of the effect that the effective flow may have on the evolution of 
the magnetic field, we discuss the system shown in Fig. 1. As the laser pulses impinge 
upon the surface of the target, two clouds of hot plasma are formed near the target. It is 
this stage where the !ne "!Te mechanism of magnetic field generation is most efficient, 
due to the high temperatures and small length-scales.  
 The magnetic field generated by this mechanism in an axisymmetric plasma has 
only an azimuthal (! ) component B! . For non-singular distributions of temperature and 
density the field is zero on the axis, then grows with radius and finally disappears at a 
scale of the size of the focal spot. 
 Using standard vector analysis equations, one can present Eq. (19) as: 

 
!B!
!t

= "
!
!r

B!ur( )" !
!z

B!uz( )+ S! .       (24) 

It can be reduced to the continuity equation for the quantity C! = B! / r : 

 
!C!

!t
= "
1
r
!
!r

C!rur( )" !
!z

C!uz( )+
S!
r

.      (25)   

 Outside the zone near the target, the source of the magnetic field is weak, due to 
lower temperatures and larger length-scales, and the source term can be dropped. The 
evolution of the field is then determined mainly by advection.  
 The continuity equation (10) for the axisymmetric flow becomes 

 !ne
!t

= "
1
r
!
!r

nerur( )" !
!z

neuz( )        (26) 

Comparing it with Eq. (25), one concludes that outside the source region, for every 
Lagrange element, C! / ne = const ,  or B! / ner = const . This is a frozen-in condition for 
the axisymmetric flow. It can be also derived from simple intuitive arguments as follows. 
Consider the evolution of a magnetic fluxtube of a small cross-section ! S. It forms a 
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torus surrounding the axis of the system. The magnetic flux !" through the tube does not 
change and, therefore, the field strength varies in inverse proportion to the cross-section, 
B! = !" /!S . On the other hand, the number of electrons inside the tube, 
!Ne = 2!rne!S , also does not change. Therefore, the parameter B! / ner  remains 
constant through the motion of the tube: 
 B! / ner = const .         (27) 
  In the situation of identical streams (f=1), the mid-plane serves as an impermeable 
boundary for the effective charge flow and, by virtue of the frozen-in condition, the field 
generated near the lower target cannot penetrate beyond this plane. The same is true for 
the field generated by the upper target. 
 If only one stream is present, then the streamlines are straight lines emerging from 
an area of the size of a focal spot radius. The ensuing stream then reaches the midplane at 
a radius determined by straight streamlines (Fig.3). Conversely, in the presence of two 
flows, the streamlines deviate toward much larger radii (Fig. 3). The density also 
increases compared to a single stream, roughly by a factor of two, due to the overlap with 
the second stream. The product of the radius and density is significantly greater than for 
the single stream. Equation (27) then tells us that the presence of a zone near the 
midplane where the flow becomes almost radial, together with the density increase 
related to the contribution of the second stream, leads to a large increase of the magnetic 
field near the midplane compared to a single flow. The field strength near the midplane 
will be still much less than the field in the generation zone but much higher than it would 
have been if only one flow was present. 
 The same happens, of course, on the other side of the midplane, leading to the 
formation of two flattened zones of a strong magnetic field near the midplane. Note that, 
by symmetry arguments, the field generated by the !ne " !Te  mechanism in the upper 
half-space will have an opposite sign with respect to the field in the lower half-space, 
thereby creating a natural experimental platform for studies of magnetic reconnection, 
albeit in a somewhat exotic setting (see below).  
 The specific value of the magnetic field enhancement factor depends on the 
details of the flow spatial and temporal characteristics. To find this number, one has to 
follow a given Lagrange fluid element along the streamline, thereby following r and z. 
The density at the instantaneous location of the fluid element is determined simply by Eq. 
(6). Then, using Eq. (25), one finds the field in a desired location and compares it to the 
field produced at the same point by a single flow. 
 To give an example of such analysis, we consider streams with a half angular 
width of 450 and assume the following radial distribution of the magnetic field over the 
radius halfway between the lower target and midplane (i.e., along the dotted lower line in 
Fig. 3): 
 B = 8B0rexp(1!8r)         (28) 
The distances here and in the equations below are normalized to the length-scale L, Fig. 
1. This distribution is illustrated by a green line (#1) in Fig. 4. Then, for a single flow, 
using Eq. (27), one finds that the radial distribution near the midplane, at a distance of 
!z = 0.1L , is determined by the blue curve (#2) in Fig. 4. The maximum field is now 
approximately two times lower than B0. If, however, we have two counter-propagating 
identical flows, with streamlines shown in Fig. 2b, the magnetic field near the midplane, 
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for !z = 0.1L , becomes stronger, and its radial distribution widens (curve #3 Fig. 4). 
Closer to the midplane, !z = 0.05L , a further widening occurs (magenta curve in  Fig. 4). 
In other words, a flattened structure of the enhanced magnetic field is formed on each 
side of the midplane, with the fields on opposite sides having opposite signs. 
 The absolute value of the field depends on the sources that have produced the 
field near the targets. For the experiments of the type [1-3], the laser intensities and focal 
spot sizes are comparable to those in Ref. [17], where a detailed characterization of the 
field was produced. So, we assume that the field in the generation area is ~ 50 T and the 
radius of this area is ~ 300 µm. Then, at the distance of  L/2~ 2.5 mm the field strength in 
our model would be ~8 times less, i.e., ~ 6 T. For a single flow it would further drop to ~ 
3 T at a distance L~ 5 mm.  However, in the presence of two flows, it will be enhanced 
by the stagnation flow and increase by a factor ~ 2, to the value ~ 12 T. Importantly, this 
enhancement zone will be flattened near the midplane, due to the shape of the effective 
flow, with a radius significantly greater than its thickness.  
 
V. DISCUSSION 
  
 We have derived the frozen-in conditions for two interpenetrating weakly-
collisional plasma streams and have shown that for a broad range of parameters the field 
is frozen into the ion charge flow. The latter forms a set of streamlines that possesses a 
singular surface “impermeable” to this effective flow, although the ions of each stream 
pass through it freely. In the vicinity of this surface the effective flow is diverted 
sideways, to larger radii. The magnetic field therefore is compressed near this surface and 
becomes significantly higher than it would have been in a single flow. The field 
distribution experiences also a “flattening” near this plane. 
 Our model describes the evolution of the magnetic field subsequent to its 
advection by the plasma flow out of the generation zone near the target, but it does not 
predict the magnitude of the field. If the field is generated by the !ne "!Te mechanism, 
then it can be found by the solving 2-dimensional magnetohydrodynamic equations near 
the targets. Helpfully, the presence of the second stream near the target can be ignored, as 
its density there is very low.  
 If the magnetic field is generated by the !ne "!Te mechanism, it has an opposite 
polarity on the two sides of the separating surface. This creates a natural platform for the 
study of magnetic reconnection (see Ref. [18] for a general review of magnetic 
reconnection). For realistic values of the magnetic field that one can expect in the vicinity 
of the separating surface, the size of the ion gyro-orbit is large compared to the thickness 
of this zone, so that the ion streams react only weakly to the magnetic fields. As a result, 
the ions enter the problem only via the quasineutrality condition, providing a known 
neutralizing background. The reconnection itself would occur in the electron fluid. Such a 
setting allows one to test various reconnection models in a situation in which the 
reconnection occurs in the electron fluid, with the ions providing a fixed neutralizing 
background. 
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APPENDIX. Tilted targets 
 
 In this appendix we illustrate the shape of the stagnation surfaces for the case 
where the targets are tilted with respect to each other, as shown in Fig. 5a. The distances 
are normalized to the half-distance between the flow origins, i.e. to L, Fig. 5a. The tilt 
angles are γL  and γU for the lower and the upper target, respectively.  
 In three-dimensions, these stagnation surfaces are non-planar and thereby hard to 
illustrate. We therefore consider in this section two-dimensional flows in the x-y plane. 
We keep the assumption that the velocity is constant, and that the angular dependence of 
the flux is caused by the angular dependence of the density.  
 In Fig. 5b, the shape of the streamlines is shown for the half-divergence angle of 
60o, γL=γU=45o, for the streams of identical intensity. The separating surface goes from 
the lower left to the upper right corner. Intersecting it is a singular streamline whose 
intersection with the separating surface determines the point where u=0. The latter line in 
the model under consideration turns out to always be a straight line connecting the origins 
of the flows. In Fig. 5c, we illustrate the situation with γL=γU=45o, but half-divergence 
angle of 300 and the lower stream two times weaker than the upper stream. The 
separating surface is now non-planar and shifted closer to the weaker source.  
 Fig.5 shows that the flattened structures of the magnetic field formed near the 
“impermeable” surface can have a variety of orientations, depending on the geometry of 
the targets and the mutual intensity of the flows.   
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Table 1 Parameters of each of the streams in the midpoint between the targets for 
fully stripped carbon 
 
 
Parameter 

Ion 
density, 
ni, cm-3 

Ion flow 
velocity, 
v, cm/s 

Ion 
kinetic 
energy, 
Wi, keV 

Ion 
temp.,  
Ti keV 

Electron 
temp., 
Te, keV 

Spatial 
scale,  
L, cm 

Temporal 
scale, 
τ=L/v, ns 

 
Value 
 

 
1018 

 
108 

 
60 

 
1 

 
1 

 
0.5 

 
5 

 
 
     Table 2 Derived parameters  

 
Parameter Notation Value 

 
Inter-stream ion 
collision lengtha) 

λ*
ii 10 cm 

Intra-stream ion 
collision length 

λii 30 µm 

Electron-ion collision 
length 

λei 0.05 cm 

Ion thermal velocity vTi 1.4×107 cm/s 
 

Electron thermal 
velocity 

vTe 2×109 cm/s 

Magnetic diffusivity DM 103 cm2/s 
 

Magnetic Reynolds 
number 

ReM=Lv/DM 5×104
  

Thermal beta for 
electron gas 

!T " 2ZniTe / pM
 

(pM=magnetic 
pressure) 

20, for a 
magnetic field 

of 10 T 
 

 a) We use an asterisk to mark the collisions between two streams, vs. in-stream collisions. 
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Figure captions 
 
Fig. 1 The geometry of the problem. Arrows show streamlines of the diverging ion flow 
in the vicinity of the targets. The size of the sources is assumed to be small compared to 
L, consistent with recent experiments.  

 
Fig. 2 Streamlines of the effective flow: a) half angular width of 30 degrees; b) half 
angular width of 60 degrees; c) half angular width of 90 degrees (isotropic flow);  d) half 
angular width of 60 degrees and f=0.5 (the upper jet is 2 times weaker than the lower 
one).  
 
Fig. 3 Comparison of magnetic field advection for a single and a double flow. The lower 
dotted line corresponds to a cross-section half-way between the midplane and the lower 
target. Streamlines of the single flow (dashed straight line) and effective flow (solid line) 
are virtually indistinguishable below this cross-section. The radial field distributions here 
are also essentially the same for single flow and the counterstreaming flows. This 
distribution is shown in Fig. 4, curve 1. In the case of a single flow, the magnetic field 
decreases significantly from this cross-section to that near the midplane (the dotted line at 
a distance of 0.1L from the midplane), see curve 2 in Fig. 4. Conversely, for the 
counterstreaming flows the field at the distance of 0.1L becomes higher than the field at 
the distance of 0.5L from the target.  
 
Fig. 4 The magnetic field radial distribution: 1 – half-way between the lower target and 
the midplane; 2 – !z = 0.1L below the midplane for a single flow; !z = 0.1L  below the 
midplane for symmetric counterstreaming flows; !z = 0.05L below the midplane for the 
symmetric counterstreaming flows. All the fields are normalized to the maximum value 
B0 of the magnetic field for the curve #1.  
 
Fig.5 Streamlines for tilted targets: a) Target orientation;  b) Streamlines for γL=γU=45o, 
and half-divergence angle of 60o. The axes of the flows are shown by arrows. Flows have 
the same density. c) Streamlines for γL=γU=45o, and half-divergence angle of 30o. The 
lower stream is two times less dense than the upper one. 
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Fig.1 
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Fig. 2 
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Fig.3 

 

Fig.4 
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Fig. 5 


